Обработка конусных наружных и внутренних поверхностей. Способы точения конуса, обработка фасонных поверхностей. Способы обработки внутренних конических поверхностей

8.1. Способы обработки При обработке валов часто встречаются переходы между обрабатываемыми поверхностями, которые имеют коническую форму. Если длина конуса не превышает 50 мм, то его обрабатывают широким резцом (8.2). При этом режущая кромка резца должна быть установлена в плане относительно оси центров на угол, соответствующий углу наклона конуса на обрабатываемой детали. Резцу сообщают подачу в поперечном или продольном направлении. Чтобы уменьшить искажение образующей конической поверхности и отклонение угла наклона конуса, режущую кромку резца устанавливают по оси вращения детали.
Следует учитывать, что при обработке конуса резцом с режущей кромкой длиной более 10-15 мм могут возникнуть вибрации. Уровень вибраций растет с увеличением длины обрабатываемой детали и с уменьшением ее диаметра, а также с уменьшением угла наклона конуса, с приближением расположения конуса к середине детали и с увеличением вылета резца и при недостаточно прочном его закреплении. При вибрациях появляются следы и ухудшается качество обработанной поверхности. При обработке широким резцом жестких деталей вибрации могут не возникать, но при этом возможно смещение резца под действием радиальной составляющей силы резания, что может привести к нарушению настройки резца на требуемый угол наклона. Смещение резца зависит также от режима обработки и направления подачи.
Конические поверхности с большими уклонами можно обрабатывать при повернутых верхних салазках суппорта с резцедержателем (8.3) на угол а, равный углу наклона обрабатываемого конуса. Подача резца производится вручную (рукояткой верхних салазок), что является недостатком этого способа, так как неравномерность подачи приводит к увеличению шероховатости обработанной поверхности. По этому способу обрабатывают конические поверхности, длина которых соизмерима с длиной хода верхних салазок.


Конические поверхности большой длины с углом наклона сс = 84-Ю° можно обрабатывать при смещении заднего центра (8.4), величина которого й = = L sin а. При малых углах sin a«tg a, а h = L{D-d)/2l. Если L = /, то /i = (D - -d)/2. Величину смещения задней бабки определяют по шкале, нанесенной на торце опорной плиты со стороны маховика, и риске на торце корпуса задней бабки. Цена деления на шкале 1 мм. При отсутствии шкалы на опорной плите величину смещения задней бабки отсчитывают по линейке, приставленной к опорной плите. Контроль величины смещения задней бабки производят с помощью упора (8.5, а) или индикатора (8.5, б). В качестве упора может быть использована тыльная сторона резца. Упор или индикатор подводят к пиноли задней бабки, фиксируют их исходное положение по лимбу рукоятки поперечной подачи или по стрелке индикатора. Заднюю бабку смещают на величину, большую h (см. 8.4), а упор или индикатор передвигают (рукояткой поперечной подачи) на величину h от исходного положения. Затем заднюю бабку смещают в сторону упора или индикатора, проверяя ее положение по стрелке индикатора или по тому, насколько плотно зажата полоска бумаги между упором и пи-нолью. Положение задней бабки можно определить по готовой детали или образцу, которые устанавливают в центрах станка.
Затем индикатор устанавливают в резцедержатель, подводят к детали до соприкосновения у задней бабки и перемещают (суппортом) вдоль образующей детали. Заднюю бабку смещают до тех пор, пока отклонение стрелки индикатора не будет минимальным на длине образующей конической поверхности, после чего бабку закрепляют. Одинаковая конусность деталей в партии, обрабатываемых этим способом, обеспечивается при минимальных отклонениях заготовок по длине и центровых отверстий по размеру (глубине). Поскольку смещение центров станка вызывает изнашивание центровых отверстий запотовок, конические поверхности обрабатывают предварительно, а затем, исправив центровые отверстия, производят окончательную чистовую обработку. Для уменьшения разбивки центровых отверстий и износа центров целесообразно применять центры со скругленными вершинами.
Конические поверхности с a = 0-j-12° обрабатывают с использованием копирных устройств. К станине станка-крепится плита / (8.6, а) с копирной линейкой 2, по которой перемещается ползун 5, соединенный с суппортом 6 станка тягой 7 с помощью зажима 8. Для свободного перемещения суппорта в поперечном направлении необходимо отсоединить винт поперечной подачи. При продольном перемещении суппорта 6 резец получает два движения: продольное от суппорта и поперечное от копирной линейки 2. Угол поворота линейки относительно оси 3 определяют по делениям на плите /. Закрепляют линейку болтами 4. Подачу резца на глубину резания производят рукояткой перемещения верхних салазок суппорта.
Обработку наружных и торцовых конических поверхностей 9 (8.6, б) производят по копиру 10, который устанавливают в пиноли задней бабки или в револьверной головке станка. В резцедержателе поперечного суппорта закрепляют приспособление 11 с копирным роликом 12 и остроконечным проходным резцом. При поперечном перемещении суппорта копирный палец в соответствии с профилем копира 10 получает продольное перемещение на определенную величину, которая передается резцу. Наружные конические поверхности обрабатывают проходными резцами, а внутренние - расточными резцами.
Для получения конического отверстия в сплошном материале (8.7, а-г) заготовку обрабатывают предварительно (сверлят, зенкеруют, растачивают), а затем окончательно (развертывают, растачивают). Развертывание выполняют последовательно комплектом конических разверток (8.8, а-в). Предварительно в заготовке сверлят отверстие диаметром на 0,5- 1,0 мм меньше диаметра направляющего конуса развертки. Затем отверстие обрабатывают последовательно тремя развертками: режущие кромки черновой развертки (первой) имеют форму уступов; вторая, получистовая развертка снимает неровности, оставленные черновой разветкой; третья, чистовая развертка имеет сплошные режущие кромки по всей длине и калибрует отверстие.
Конические отверстия высокой точности предварительно обрабатывают коническим зенкером, а затем конической разверткой. Для уменьшения съема металла зенкером отверстие иногда обрабатывают ступенчато сверлами разного диаметра. 8.2. Обработка центровых отверстий В деталях типа валов часто приходится выполнять центровые отверстия, которые используют для дальнейшей обработки детали и для восстановления ее при эксплуатации.
Центровые отверстия вала должны находиться на одной оси и иметь одинаковые размеры на обоих торцах вала независимо от диаметров концевых шеек вала. При невыполнении этих требований снижается точность обработки и увеличивается износ центров и центровых отверстий.
Наиболее распространены центровые отверстия с углом конуса 60° (8.9, а; табл. 8.1). Иногда при обработке крупных тяжелых заготовок этот угол увеличивают до 75 или до 90°. Вершина рабочей части центра не должна упираться в заготовку, поэтому центровые отверстия всегда имеют при вершине цилиндрическое углубление малого диаметра d. Для защиты центровых отверстий от повреждений при многократной установке заготовки в центрах предусмотрены центровые отверстия с предохранительной фаской с углом 120° (8.9, б).
На 8.10 показано, как изнашивается задний центр станка при неправильно выполненном центровом отверстии в заготовке. При несоосности а центровых отверстий и несоосности b центров (8.11) заготовка базируется с перекосом, что вызывает значительные погрешности формы наружной поверхности детали.
Центровые отверстия в заготовках обрабатывают различными способами. Заготовку закрепляют в самоцентрирующем патроне, а в пиноль задней бабки вставляют сверлильный патрон с центровочным инструментом.
Центровые отверстия диаметром 1,5- 5 мм обрабатывают комбинированными центровыми сверлами без предохранительной (8.12, г) и с предохранительной фаской (8.12, д). Центровые отверстия других размеров обрабатывают раздельно, сначала цилиндрическим сверлом (8.12, а), а затем однозубой (8.12, б) или многозубой (8.12, е) зенковкой. Центровые отверстия обрабатывают при вращающейся заготовке и ручной подаче центровочного инструмента. Торец заготовки предварительно подрезают резцом. Необходимый размер центрового отверстия определяют по углублению центровочного инструмента, пользуясь лимбом маховика задней бабки или шкалой (упором) пиноли. Для обеспечения соосности центровых отверстий заготовку предварительно размечают, а при зацентровке поддерживают люнетом. Центровые отверстия размечают с помощью разметочного угольника (8.13). Пересечение нескольких рисок определяет положение центрового отверстия на торце вала. После разметки производят накер-нивание центрового отверстия.
Измерение конусности наружных конических поверхностей может выполняться шаблоном или универсальным угломером. Для более точных измерений конусов применяют калибры-втулки. С помощью калибра-втулки проверяют не только угол конуса, но и его диаметры (8.14). На обработанную поверхность конуса наносят 8.14. Калибр-втулка для проверки наружных конусов (а) и пример ее применения (б) 2-3 риски карандашом, затем надевают калибр-втулку на измеряемый конус детали, слегка нажимая вдоль оси и поворачивая ее. При правильно выполненном конусе все риски стираются, а конец конической детали находится между метками А и В калибра-втулки.
При измерении конических отверстий применяют калибр-пробку. Правильность обработки конического отверстия определяют так же, как и при измерении наружных конусов по взаимному прилеганию поверхностей детали и калибра-пробки.

Обработка деталей с конической поверхностью связана с образованием конуса, который характеризуется следующими размерами - рисунок слева а): меньшим d и большим D диаметрами и расстоянием L между плоскостями, в которых расположены окружности с диаметрами D и d. Угол α называется углом наклона конуса, а угол 2α - углом конуса. Отношение K=(D-d)/L называется конусностью и обычно обозначается со знаком деления (например, 1: 20 или 1: 50), а в некоторых случаях десятичной дробью (например, 0,05 или 0,02). Отношение y=(D-d)/(2L)=tg α называется уклоном.

Способы обработки конических поверхностей

При обработке валов часто встречаются переходы между обрабатываемыми поверхностями, имеющие коническую форму. Если длина конуса не превышает 50 мм, то его обработку можно производить широким резцом - рисунок слева б). Угол наклона режущей кромки резца в плане должен соответствовать углу наклона конуса на обрабатываемой детали. Резцу сообщают подачу в поперечном или продольном направлении. Для уменьшения искажения образующей конической поверхности и уменьшения отклонения угла наклона конуса необходимо устанавливать режущую кромку резца по оси вращения обрабатываемой детали. Следует учитывать, что при обработке конуса резцом с режущей кромкой длиной более 10-15 мм могут возникнуть вибрации, уровень которых тем выше, чем больше длина обрабатываемой детали, меньше ее диаметр, меньше угол наклона конуса, ближе расположен конус к середине детали, больше вылет резца и меньше прочность его закрепления. В результате вибраций на обрабатываемой поверхности появляются следы и ухудшается ее качество. При обработке широким резцом жестких деталей вибрации могут отсутствовать, но при этом возможно смещение резца под действием радиальной составляющей силы резания, что приводит к нарушению настройки резца на требуемый угол наклона. Смещение резца зависит от режима обработки и направления подачи.

Конические поверхности с большими уклонами можно обрабатывать при повороте верхних салазок суппорта с резцедержателем - рисунок слева в), на угол α, равный углу наклона обрабатываемого конуса. Подача резца производится вручную (рукояткой перемещения верхних салазок), что является недостатком этого метода, поскольку неравномерность ручной подачи приводит к увеличению шероховатости обработанной поверхности. Указанным способом обрабатывают конические поверхности, длина которых соизмерима с длиной хода верхних салазок.

Конические поверхности большой длины с α=8-10 градусов можно обрабатывать при смещении задней бабки - рисунок слева г), величина которого h=L×sin α. Величину смещения задней бабки определяют по шкале, нанесенной на торце опорной плиты со стороны маховика, и риске на торце корпуса задней бабки. Цена деления на шкале обычно 1 мм. При отсутствии шкалы на опорной плите величину смещения задней бабки отсчитывают по линейке, приставленной к опорной плите. Способы контроля величины смещения задней бабки показаны на рисунке справа. В резцедержателе закрепляют упор, рисунок а) или индикатор, рисунок б). В качестве упора может быть использована тыльная сторона резца. Упор или индикатор подводят к пиноли задней бабки, фиксируют их исходное положение по лимбу рукоятки поперечной подачи или по стрелке индикатора, а затем отводят. Заднюю бабку смещают на величину больше h, a упор или индикатор передвигают (рукояткой поперечной подачи) на величину h от исходного положения. Затем заднюю бабку смещают в сторону упора или индикатора, проверяя ее положение по стрелке индикатора или по тому, насколько плотно зажата полоска бумаги между упором и пинолью. Положение задней бабки для обработки конической поверхности можно определить по готовой детали. Готовую деталь (или образец) устанавливают в центрах станка и заднюю бабку смещают до тех пор, пока образующая конической поверхности не окажется параллельной направлению продольного перемещения суппорта. Для этого индикатор устанавливают в резцедержатель, подводят к детали до соприкосновения и перемещают (суппортом) вдоль образующей детали. Заднюю бабку смещают до тех пор, пока отклонения стрелки индикатора не будут минимальными, после чего закрепляют.

Для обеспечения одинаковой конусности партии деталей, обрабатываемых этим способом, необходимо, чтобы размеры заготовок и их центровых отверстий имели незначительные отклонения. Поскольку смещение центров станка вызывает износ центровых отверстий заготовок, рекомендуется обработать конические поверхности предварительно, затем исправить центровые отверстия и после этого произвести окончательную чистовую обработку. Для уменьшения разбивки центровых отверстий и износа центров целесообразно последние выполнять со скругленными вершинами.

Распространенной является обработка конических поверхностей с применением копирных устройств. К станине станка крепится плита 1, рисунок слева а), с копирной линейкой 2, по которой перемещается ползун 5, соединенный с суппортом 6 станка тягой 7 с помощью зажима 8. Для свободного перемещения суппорта в поперечном направлении необходимо отсоединить винт поперечной подачи. При продольном перемещении суппорта 6 резец получает два движения: продольное от суппорта и поперечное от копирной линейки 2. Величина поперечного перемещения зависит от угла поворота копирной линейки 2 относительно оси 3 поворота. Угол поворота линейки определяют по делениям на плите 1, фиксируют линейку болтами 4. Подачу резца на глубину резания производят рукояткой перемещения верхних салазок суппорта. Обработку конической поверхности 4, рисунок слева б), производят по копиру 3, установленному в пиноли задней бабки или в револьверной головке станка. В резцедержателе поперечного суппорта устанавливают приспособление 1 с копирным роликом 2 и остроконечным проходным резцом. При поперечном перемещении суппорта копирный ролик 2 в соответствии с профилем копира 3 получает продольное перемещение, которое передается (через приспособление 1) резцу. Наружные конические поверхности обрабатываются проходными, а внутренние конические поверхности - расточными резцами.

Для получения конического отверстия в сплошном материале, рисунок справа, заготовку обрабатывают предварительно (сверлят, растачивают), а затем окончательно (развертывают). Развертывание выполняют последовательно комплектом конических разверток - рисунок внизу. Диаметр предварительно просверленного отверстия на 0,5-1 мм меньше заходного диаметра развертки. Формы режущих кромок и работа разверток: режущие кромки черновой развертки - а) имеют форму уступов; получистовая развертка - б) снимает неровности, оставленные черновой разверткой; чистовая развертка - в) имеет сплошные режущие кромки по всей длине и калибрует отверстие. Если требуется коническое отверстие высокой, точности, то его перед развертыванием обрабатывают коническим зенкером, для чего в сплошном материале сверлят отверстие диаметром на 0,5 мм меньше, чем диаметр конуса, а затем применяют зенкер. Для уменьшения припуска под зенкерование иногда применяют ступенчатые сверла разного диаметра.

§ 1. Общие сведения
1. Область применения конусов. Наряду с цилиндрическими деталями в машиностроении получили довольно широкое распространение детали с коническими поверхностями. Примерами их могут служить конусы центров, хвостовиков сверл, зенкеров, разверток. Для крепления этих инструментов передние участки отверстий шпинделя и пиноли токарного станка имеют также коническую форму.
Однако область использования конусов не ограничивается режущими инструментами. Конические поверхности имеют многие детали машин.
Широкое использование конических соединений объясняется рядом их преимуществ.
1. Они обеспечивают высокую точность центрирования деталей.
2. При плотном соприкосновении пологих конусов получается неподвижное соединение.
3. Изменяя осевое положение деталей конического соединения, можно регулировать величину зазора между ними.
2. Конус и его элементы. Конус представляет собой геометрическое тело, поверхность которого получается вращением прямой линии (образующей), наклонно расположенной к оси вращения (рис. 129, а).
Точка пересечения образующей с осью называется вершиной конуса.
Плоскости, перпендикулярные к оси конуса, называются, основаниями.
Различают полный и усеченный конусы. Первый расположен между основанием и вершиной, второй - между двумя основаниями (большим и меньшим).
Конус характеризуется следующими элементами: диаметром большего основания D; диаметром меньшего основания d; длиной l; углом уклона а между образующей и осью конуса; углом конуса 2а между противоположными образующими.
Кроме этого, на рабочих чертежах конических деталей часто употребляют понятия конусность и уклон.
Конусностью называется отношение разности диаметров двух перечных сечений конуса к расстоянию между ними. Она опреляется по формуле

Уклоном называется отношение разности радиусов двух поперечных сечений конуса к расстоянию между ними. Его определяют по формуле

Из формул (9) и (10) видно, что уклон равен половине конусности.


Тригонометрически уклон равен тангенсу угла уклона (см. рис. 129, б, треугольник ABC), т. е.

На чертеже (рис. 130) конусность обозначают знаком <, а уклон -, острие которых направляется в сторону вершины конуса. После знака указывается отношение двух цифр. Первая из них соответствует разности диаметров в двух принятых сечениях конуса, вторая для конусности- расстояние между сечениями, для уклона - удвоенной величине этого расстояния.
Конусность и уклон иногда записываются числами десятичной дроби: 6,02; 0,04; 0,1 и т. д. Для конусности эти цифры соответствуют разности диаметров конуса на длине 1 мм, для уклона - разности радиусов на этой же длине.
Для обработки полного конуса достаточно знать два элемента: диаметр основания и длину; для усеченного конуса - три элемента: диаметры большего и меньшего оснований и длину. Вместо одного из указанных элементов может быть задан угол наклона а, уклон или конусность. В этом случае для определения недостающих размеров пользуются вышеприведенными формулами (9), (10) и (11).


Пример 1. Дан конус, у которого d=30 мм, /=500 мм, К=1: 20. Определить больший диаметр конуса.
Решение. Из формулы (9)

Пример 2. Дан конус, у которого D=40 мм, l = 100 мм, а=5 , Определить меньший диаметр конуса.
Решение. Из формулы (11)

По таблице тангенсов находим tg5°=0,087. Следовательно, d=40-2*100Х Х0,87=22,6 мм.
Пример 3. Определить угол уклона а, если на чертеже указаны размеры конуса: D-50 мм, d=30 мм, /=200 мм.
Решение. По формуле (11)

Из таблицы тангенсов находим а=2 50 .
Пример 4. Дан конус, у которого D=60 мм, /=150 мм, К=1: 50. Определить угол уклона а.
Решение. Так как уклон равен половине конусности, можно записать:

По таблице тангенсов находим а=0 30 .
3. Нормальные конусы. Конусы, размеры которых стандартизованы, называются нормальными. К ним относятся конусы Морзе, метрические, конусы для насадных разверток и зенкеров с конусностью 1:50 0, под конические штифты - с конусностью 1:50, для конических резьб с конусностью 1: 16 и др.
Наибольшее распространение в машиностроении получили инструментальные конусы Морзе и метрические, основные размеры которых приведены в табл. 13.

Размеры конусов Морзе выражаются дробными числами. Это объясняется тем, что впервые стандарт на них был принят в дюймовой системе измерения, которая сохранилась до настоящего времени. Конусы Морзе имеют различную конусность (примерно 1 20), метрические конусы одинаковую - 1:20.

Способы обработки конических поверхностей. Обработ­ка конических поверхностей на токарных станках произ­водится следующими способами: поворотом верхних са­лазок суппорта, поперечным смещением корпуса задней бабки, с помощью конусной линейки, специальным широ­ким резцом.

С применением поворота верхних салазок суппорта об- тачивают короткие конические поверхности с различным углом уклона а. Верхние салазки суппорта устанавливают на величину угла уклона по делениям, нанесенным по ок­ружности опорного фланца суппорта. Если в чертеже детали угол уклона а не указан, то его определяют по формуле: и таблице тангенсов.

Подачу при таком способе работы производят вручную вращением рукоятки винта верхних салазок суппорта. Про­дольные и поперечные салазки в это время должны быть застопорены.

Конические поверхности с небольшим углом уклона ко­нуса при сравнительно большой длине заготовки обраба­тывают с применением поперечного смещения корпуса зад­ней бабки. При этом способе обработки резец перемещается продольной подачей так же, как и при обтачивании, цилиндрических поверхностей. Коническая поверхность об­разуется в результате смещения заднего центра заготовки. При смещении заднего центра «от себя» диа­метр D большого основания конуса образуется на правом конце заготовки, а при смещении «на себя» - на левом. Величину поперечного смещения корпуса задней баб­ки b определяют по формуле: где L - рас­стояние между центрами (длинавсей заготовки), l - дли­на конической части. При L = l (конус по всей длине за­готовки) . Если известны К или а, то , или

Смещение корпуса задней бабки производят, используя деления, нанесенные на торце опорной плиты, и риску на торце корпуса задней бабки. Если на торце плиты деле­ний нет, то корпус задней бабки смещают, пользуясь из­мерительной линейкой.

Обработка конических поверхностей с помощью конус­ной линейки производится при одновременном осуществле­нии продольной и поперечной подач резца. Продольная подача производится, как обычно, от ходового валика, а поперечная - посредством конусной линейки. К станине станка прикреплена плита, на которую установлена конусная линейка. Линейка мо­жет поворачиваться вокруг пальцапод необходимым углом а° к оси обрабатываемой заготовки. Положение ли­нейки фиксируется болтами. Скользящий по линей­ке ползун соединен с нижней поперечной частьюсуппорта посредством тягии зажима. Чтобы эта часть суппорта свободно скользила по своим направляющим, ее отсоединяют от каретки, сняв или отключив винт попе­речной подачи. Если теперь каретке сообщить продольную подачу, то тяга будет перемещать ползунвдоль конус­ной линейки. Так как ползун соединен с поперечными са­лазками суппорта, то они вместе с резцом будут двигаться параллельно конусной линейке. Таким образом, резец бу­дет обрабатывать коническую поверхность с углом укло­на, равным углу поворота конусной линейки.


Глубина резания устанавливается с помощью рукояткиверхних салазок суппорта, которые должны быть повер­нуты на угол 90° относительно своего нормального поло­жения.

Режущие инструменты и режимы резания при всех рас­смотренных методах обработки конусов аналогичны тем, что и при обтачивании цилиндрических поверхностей.

Конические поверхности с небольшой длиной конуса могут обрабатываться специальным широким резцом с уг­лом в плане, соответствующем углу уклона конуса. Подача резца при этом может быть продольной или поперечной.


Обточку конических поверхностей можно осуществлять раз­личными способами в зависимости от величины конусности, от конфигурации и размеров обрабатываемой детали:

Поворотом верхних салазок суппорта (рис. 200, а). Салазки / верхнего суппорта поворачивают вокруг вертикальной оси суп­порта на угол конусности а .

Обточку конической поверхности осуществляют вручную пе­ремещением резца вдоль образующей конуса путем вращения махо­вичка 2. Этим способом обрабатывают как наружные, так и вну­тренние поверхности с любым углом конусности а с длиной обра­ботки меньше, чем величина хода верхних салазок суппорта.

Смещение корпуса задней бабки (рис. 200, б). Корпус задней бабки смещают в поперечном направлении относительно салазок на величину ft, в результате чего ось заготовки, установленной в центрах, образует с линией центров, а следовательно, с направ­лением продольной подачи суппорта угол конусности обрабаты­ваемой поверхности а. Образующая конической поверхности при такой установке располагается параллельно продольной подаче резца.

При длине конической поверхности / и длине заготовки L величину необходимого смещения корпуса задней бабки опре­деляют по формуле

h = L sin a.

Рис. 200. Схемы обработки конических поверхностей

При малых значениях a : sina ≈tga, следовательно,

h = L tga = L (D - d ) /2 l

При l=L

Этот способ применяют для обточки пологих конических поверхностей (угол а не более 8°).

Недостаток этого способа состоит в том, что вследствие непра­вильного положения центровых отверстий обрабатываемой детали на центрах станка центровые отверстия детали и сами центра быстро изнашиваются.

Для изготовления точных конических поверхностей этот способ непригоден.

С помощью конусной или копировальной линейки (рис. 200, в). Конусная линейка / укрепляется с задней стороны станка на крон­штейнах 2. Линейка устанавливается под заданным углом а. На линейке свободно сидит ползушка 3, соединенная с попереч­ными салазками суппорта. Поперечные салазки суппорта предва­рительно отсоединяются от нижней каретки суппорта путем вывин­чивания поперечного ходового винта.

При продольном перемещении суппорта резец получает резуль­тирующее движение: наряду с продольным поперечное перемеще­ние, обусловленное движением ползушки 3 по линейке /. Резуль­тирующее движение направлено вдоль образующей конической поверхности.

Этот метод применяют для обточки конических поверхностей под углом до 12°.

С помощью широких фасонных резцов. Режущие лезвия резца устанавливают под углом конусности а обрабатываемой поверх­ности к линии центров станка параллельно образующей кониче­ской поверхности.

Обточку можно осуществлять как продольной, так и попереч­ной подачей.

Этот способ пригоден для обработки коротких наружных и внутренних конических поверхностей с длиной образующей не более 25 мм, так как при больших длинах образующей возникают вибрации, приводящие к получению обработанной поверхности низкого качества.

Обработка фасонных поверхностей

Короткие фасонные поверхности (длиной не более 25-30 мм) обрабатывают фасонными резцами: круглыми, призматическими и тангенциальными.

Точность обработки фасонных поверхностей призматическими круглыми фасонными резцами, работающими одной точкой по центру и с базой, параллельной оси детали, зависит от точности коррекционного расчета профиля инструмента по профилю детали (обычно точность коррекционного расчета составляет до 0,001 мм). Однако эта расчетная точность относится только к узловым точ­кам профиля резца.

На конусном участке обработанной детали будут криволиней­ные образующие с суммарной ошибкой Δ. Суммарная ошибка Δ складывается из двух составляющих Δ 1 и Δ 2 . Ошибка Δ 1 при­суща фасонным резцам вследствие установки только одной точ­кой на высоте центра и расположения других точек ниже линии центра, что приводит к образованию на детали гиперболоида вместо цилиндра или конуса. Для устранения ошибки Δ 1 необхо­димо режущее лезвие всеми точками устанавливать по центру, т. е. в одной плоскости с осью детали.

Ошибка Δ 2 возникает только при работе круглыми резцами. Так, круглый резец для обработки конической поверхности пред­ставляет собой усеченный конус, пересеченный плоскостью (перед­няя поверхность), параллельной оси конуса, но не проходящей через ось. Поэтому лезвие резца имеет выпуклую гиперболиче­скую форму. Эта выпуклость и есть ошибка Δ 2 . У призматиче­ского резца ошибка Δ 2 равна нулю. В среднем ошибка Δ 2 в 10 раз больше величины Δ 1 . При высоких требованиях к точности обра­ботки следует применять призматические резцы.

Тангенциальные резцы применяют в основном при чистовой обработке длинных нежестких деталей, так как обработка проис­ходит не сразу по всей длине детали, а постепенно.

Длинные фасонные профили обрабатывают с помощью механи­ческих копировальных устройств, устанавливаемых с задней стороны станины на специальном кронштейне так же, как копирная линейка (рис. 200, в). В этих случаях копир имеет фасонный про­филь.

Механические копировальные устройства имеют такие недо­статки, как сложность изготовления термически обработанного копира, значительные усилия в месте контакта сухарика или ро­лика копировального устройства с рабочей поверхностью ко­пира.

Это привело к широкому распространению гидравлических и электромеханических копировальных устройств со следящим приводом.

В гидравлических копировальных устройствах в месте кон­такта рычажного наконечника и копира возникают незначитель­ные усилия, что позволяет изготавливать копир из мягких мате­риалов.

Гидравлические копировальные устройства обеспечивают точ­ность копирования от ±0,02 до ±0,05 мм. 284