Тригонометрическая форма комплексных чисел. Лекция на тему:"Тригонометрическая форма комплексного числа" 10 тригонометрическая форма комплексного числа

Лекция

Тригонометрическая форма комплексного числа

План

1.Геометрическое изображение комплексных чисел.

2.Тригонометрическая запись комплексных чисел.

3.Действия над комплексными числами в тригонометрической форме.

Геометрическое изображение комплексных чисел.

а) Комплексные числа изображают точками плоскости по следующему правилу: a + bi = M ( a ; b ) (рис.1).

Рисунок 1

б) Комплексное число можно изобразить вектором, который имеет начало в точке О и конец в данной точке (рис.2).

Рисунок 2

Пример 7. Постройте точки, изображающие комплексные числа: 1; - i ; - 1 + i ; 2 – 3 i (рис.3).

Рисунок 3

Тригонометрическая запись комплексных чисел.

Комплексное число z = a + bi можно задать с помощью радиус – вектора с координатами ( a ; b ) (рис.4).

Рисунок 4

Определение . Длина вектора , изображающего комплексное число z , называется модулем этого числа и обозначается или r .

Для любого комплексного числа z его модуль r = | z | определяется однозначно по формуле .

Определение . Величина угла между положительным направлением действительной оси и вектором , изображающим комплексное число, называется аргументом этого комплексного числа и обозначается А rg z или φ .

Аргумент комплексного числа z = 0 не определен. Аргумент комплексного числа z ≠ 0 – величина многозначная и определяется с точностью до слагаемого 2πк (к = 0; - 1; 1; - 2; 2; …): Arg z = arg z + 2πк , где arg z – главное значение аргумента, заключенное в промежутке (-π; π] , то есть -π < arg z ≤ π (иногда в качестве главного значения аргумента берут величину, принадлежащую промежутку .

Эту формулу при r =1 часто называют формулой Муавра:

(cos φ + i sin φ) n = cos (nφ) + i sin (nφ), n  N .

Пример 11. Вычислите (1 + i ) 100 .

Запишем комплексное число 1 + i в тригонометрической форме.

a = 1, b = 1 .

cos φ = , sin φ = , φ = .

(1+i) 100 = [ (cos + i sin )] 100 = ( ) 100 (cos ·100 + i sin ·100) = = 2 50 (cos 25π + i sin 25π) = 2 50 (cos π + i sin π) = - 2 50 .

4) Извлечение квадратного корня из комплексного числа.

При извлечении квадратного корня из комплексного числа a + bi имеем два случая:

если b > о , то ;

3.1. Полярные координаты

На плоскости часто применяется полярная система координат . Она определена, если задана точка O, называемая полюсом , и исходящий из полюса луч (для нас это ось Ox) – полярная ось. Положение точки M фиксируется двумя числами: радиусом (или радиус-вектором) и углом φ между полярной осью и вектором . Угол φ называется полярным углом; измеряется в радианах и отсчитывается от полярной оси против часовой стрелки.

Положение точки в полярной системе координат задается упорядоченной парой чисел (r; φ). У полюса r = 0, а φ не определено. Для всех остальных точек r > 0, а φ определено с точностью до слагаемого кратного 2π. При этом парам чисел (r; φ) и (r 1 ; φ 1) сопоставляется одна и та же точка, если .

Для прямоугольной системы координат xOy декартовы координаты точки легко выражаются через ее полярные координаты следующим образом:

3.2. Геометрическая интерпретация комплексного числа

Рассмотрим на плоскости декартову прямоугольную систему координат xOy .

Любому комплексному числу z=(a, b) ставится в соответствие точка плоскости с координатами (x, y ), где координата x = a, т.е. действительной части комплексного числа, а координата y = bi – мнимой части.

Плоскость, точками которой являются комплексные числа – комплексная плоскость.

На рисунке комплексному числу z = (a, b) соответствует точка M(x, y) .

Задание. Изобразите на координатной плоскости комплексные числа:

3.3. Тригонометрическая форма комплексного числа

Комплексное число на плоскости имеет координаты точки M (x; y) . При этом:

Запись комплексного числа - тригонометрическая форма комплексного числа.

Число r называется модулем комплексного числа z и обозначается . Модуль – неотрицательное вещественное число. Для .

Модуль равен нулю тогда и только тогда, когда z = 0, т.е. a = b = 0 .

Число φ называется аргументом z и обозначается . Аргумент z определен неоднозначно, как и полярный угол в полярной системе координат, а именно с точностью до слагаемого кратного 2π.

Тогда принимаем: , где φ – наименьшее значение аргумента. Очевидно, что

.

При более глубоком изучении темы вводится вспомогательный аргумент φ*, такой, что

Пример 1 . Найти тригонометрическую форму комплексного числа .

Решение. 1) считаем модуль: ;

2) ищем φ: ;

3) тригонометрическая форма:

Пример 2. Найти алгебраическую форму комплексного числа .

Здесь достаточно подставить значения тригонометрических функций и преобразовать выражение:

Пример 3. Найти модуль и аргумент комплексного числа ;


1) ;

2) ; φ – в 4 четверти:

3.4. Действия с комплексными числами в тригонометрической форме

· Сложение и вычитание удобнее выполнять с комплексными числами в алгебраической форме:

· Умножение – при помощи несложных тригонометрических преобразований можно показать, что при умножении модули чисел перемножаются, а аргументы складываются: ;

В данном параграфе больше речь пойдет о тригонометрической форме комплексного числа. Показательная форма в практических заданиях встречается значительно реже. Рекомендую закачать и по возможности распечатать тригонометрические таблицы , методический материал можно найти на странице Математические формулы и таблицы. Без таблиц далеко не уехать.

Любое комплексное число (кроме нуля) можно записать в тригонометрической форме:

Где – этомодуль комплексного числа , а –аргумент комплексного числа .

Изобразим на комплексной плоскости число . Для определённости и простоты объяснений расположим его в первой координатной четверти, т.е. считаем, что:

Модулем комплексного числа называется расстояние от начала координат до соответствующей точки комплексной плоскости. Попросту говоря,модуль – это длина радиус-вектора, который на чертеже обозначен красным цветом.

Модуль комплексного числа стандартно обозначают:или

По теореме Пифагора легко вывести формулу для нахождения модуля комплексного числа: . Данная формула справедливадля любых значений «а» и «бэ».

Примечание : модуль комплексного числа представляет собой обобщение понятия модуля действительного числа , как расстояния от точки до начала координат.

Аргументом комплексного числа называетсяугол между положительной полуосью действительной оси и радиус-вектором, проведенным из начала координат к соответствующей точке. Аргумент не определён для единственного числа:.

Рассматриваемый принцип фактически схож с полярными координатами, где полярный радиус и полярный угол однозначно определяют точку.

Аргумент комплексного числа стандартно обозначают:или

Из геометрических соображений получается следующая формула для нахождения аргумента:

. Внимание! Данная формула работает только в правой полуплоскости! Если комплексное число располагается не в 1-ой и не 4-ой координатной четверти, то формула будет немного другой. Эти случаи мы тоже разберем.

Но сначала рассмотрим простейшие примеры, когда комплексные числа располагаются на координатных осях.

Пример 7

Представить в тригонометрической форме комплексные числа: ,,,. Выполним чертёж:

На самом деле задание устное. Для наглядности перепишу тригонометрическую форму комплексного числа:

Запомним намертво, модуль – длина (которая всегда неотрицательна ), аргумент – угол

1) Представим в тригонометрической форме число . Найдем его модуль и аргумент. Очевидно, что. Формальный расчет по формуле:. Очевидно, что(число лежит непосредственно на действительной положительной полуоси). Таким образом, число в тригонометрической форме:.

Ясно, как день, обратное проверочное действие:

2) Представим в тригонометрической форме число . Найдем его модуль и аргумент. Очевидно, что. Формальный расчет по формуле:. Очевидно, что(или 90 градусов). На чертеже угол обозначен красным цветом. Таким образом, число в тригонометрической форме:.

Используя , легко обратно получить алгебраическую форму числа (заодно выполнив проверку):

3) Представим в тригонометрической форме число . Найдем его модуль и

аргумент. Очевидно, что . Формальный расчет по формуле:

Очевидно, что (или 180 градусов). На чертеже угол обозначен синим цветом. Таким образом, число в тригонометрической форме:.

Проверка:

4) И четвёртый интересный случай. Очевидно, что. Формальный расчет по формуле:.

Аргумент можно записать двумя способами: Первый способ: (270 градусов), и, соответственно:. Проверка:

Однако более стандартно следующее правило: Если угол больше 180 градусов , то его записывают со знаком минус и противоположной ориентацией («прокруткой») угла: (минус 90 градусов), на чертеже угол отмечен зеленым цветом. Легко заметить,

что и– это один и тот же угол.

Таким образом, запись принимает вид:

Внимание! Ни в коем случае нельзя использовать четность косинуса, нечетность синуса и проводить дальнейшее «упрощение» записи:

Кстати, полезно вспомнить внешний вид и свойства тригонометрических и обратных тригонометрических функций, справочные материалы находятся в последних параграфах страницы Графики и свойства основных элементарных функций. И комплексные числа усвоятся заметно легче!

В оформлении простейших примеров так и следует записывать: «очевидно, что модуль равен… очевидно, что аргумент равен...» . Это действительно очевидно и легко решается устно.

Перейдем к рассмотрению более распространенных случаев. C модулем проблем не возникает, всегда следует использовать формулу . А вот формулы для нахождения аргумента будут разными, это зависит от того, в какой координатной четверти лежит число. При этом возможны три варианта (их полезно переписать):

1) Если (1-ая и 4-ая координатные четверти, или правая полуплоскость), то аргумент нужно находить по формуле.

2) Если (2-ая координатная четверть), то аргумент нужно находить по формуле.

3) Если (3-я координатная четверть), то аргумент нужно находить по формуле.

Пример 8

Представить в тригонометрической форме комплексные числа: ,,,.

Коль скоро есть готовые формулы, то чертеж выполнять не обязательно. Но есть один момент: когда вам предложено задание представить число в тригонометрической форме, то чертёж лучше в любом случае выполнить . Дело в том, что решение без чертежа часто бракуют преподаватели, отсутствие чертежа – серьёзное основание для минуса и незачета.

Представляем в комплексной форме числа и, первое и третье числа будут для самостоятельного решения.

Представим в тригонометрической форме число . Найдем его модуль и аргумент.

Поскольку (случай 2), то

–вот здесь нечетностью арктангенса воспользоваться нужно. К сожалению, в таблице отсутствует значение , поэтому в подобных случаях аргумент приходится оставлять в громоздком виде:– числов тригонометрической форме.

Представим в тригонометрической форме число . Найдем его модуль и аргумент.

Поскольку (случай 1), то(минус 60 градусов).

Таким образом:

–число в тригонометрической форме.

А вот здесь, как уже отмечалось, минусы не трогаем .

Кроме забавного графического метода проверки, существует и проверка аналитическая, которая уже проводилась в Примере 7. Используем таблицу значений тригонометрических функций , при этом учитываем, что угол – это в точности табличный угол(или 300 градусов):– числов исходной алгебраической форме.

Числа ипредставьте в тригонометрической форме самостоятельно. Краткое решение и ответ в конце урока.

В конце параграфа кратко о показательной форме комплексного числа.

Любое комплексное число (кроме нуля) можно записать в показательной форме:

Где – это модуль комплексного числа, а– аргумент комплексного числа.

Что нужно сделать, чтобы представить комплексное число в показательной форме? Почти то же самое: выполнить чертеж, найти модуль и аргумент. И записать число в виде .

Например, для числа предыдущего примера у нас найден модуль и аргумент:,. Тогда данное число в показательной форме запишется следующим образом:.

Число в показательной форме будет выглядеть так:

Число – так:

Единственный совет – не трогаем показатель экспоненты, там не нужно переставлять множители, раскрывать скобки и т.п. Комплексное число в показательной форме записывается строго по форме .